Deep Learning Approaches to Cloud Security in the Indian Retail Sector
DOI:
https://doi.org/10.36676/irt.v8.i4.1511Keywords:
Cloud Security, Deep LearningAbstract
Cloud security in India's retail sector has become a significant concern as the industry adopts cloud-based solutions for data management and customer engagement. This paper examines how deep learning techniques such as Convolutional Neural Networks (CNN) and Autoencoders can be applied to detect anomalies and mitigate cyber threats in cloud-based retail environments. The study focuses on identifying and addressing security vulnerabilities such as data breaches, insider threats, and account takeovers. By presenting case studies from leading Indian retail companies, the paper highlights the potential of deep learning to enhance security and operational efficiency in cloud infrastructures.
References
Vasa, Y., Mallreddy, S. R., & Jami, V. S. (2022). AUTOMATED MACHINE LEARNING FRAMEWORK USING LARGE LANGUAGE MODELS FOR FINANCIAL SECURITY IN CLOUD OBSERVABILITY. International Journal of Research and Analytical Reviews , 9(3), 183–190.
Vasa, Y., & Singirikonda, P. (2022). Proactive Cyber Threat Hunting With AI: Predictive And Preventive Strategies. International Journal of Computer Science and Mechatronics, 8(3), 30–36.
Vasa, Y., Cheemakurthi, S. K. M., & Kilaru, N. B. (2022). Deep Learning Models For Fraud Detection In Modernized Banking Systems Cloud Computing Paradigm. International Journal of Advances in Engineering and Management, 4(6), 2774–2783. https://doi.org/10.35629/5252-040627742783
Mallreddy, S. R., & Vasa, Y. (2022). Autonomous Systems In Software Engineering: Reducing Human Error In Continuous Deployment Through Robotics And AI. NVEO - Natural Volatiles & Essential Oils, 9(1), 13653–13660. https://doi.org/https://doi.org/10.53555/nveo.v11i01.5765
Vasa, Y., & Mallreddy, S. R. (2022). Biotechnological Approaches To Software Health: Applying Bioinformatics And Machine Learning To Predict And Mitigate System Failures. Natural Volatiles & Essential Oils, 9(1), 13645–13652. https://doi.org/https://doi.org/10.53555/nveo.v9i2.5764
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Innovative Research Thoughts
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.