Quantum Entanglement and Non-Locality: Experimental Advances and Theoretical Implications

Authors

  • Anil Kumar Bharati Vidyapeeth' College of Engineering, New Delhi-110063 (India) e-mail: - dranilchhikara@gmail.com

Keywords:

Quantum entanglement, Non-locality, Quantum mechanics, Bell's theorem, Quantum information theory, Quantum computing, Quantum cryptography, Experimental advances, Technological innovations, Philosophical implications

Abstract

Quantum entanglement and non-locality are urgent peculiarities in quantum mechanics, showing the interconnectedness of particles paying little heed to separate and testing old style ideas of locality. This paper audits critical experimental progressions and theoretical improvements there. It covers significant analyses, mechanical developments in entanglement estimation, and their translations, as well as advances in the understanding of non-locality and its coordination with quantum data hypothesis. The functional implications for quantum processing and cryptography are talked about, close by philosophical contemplations and future examination bearings. The discoveries highlight the significant effect of quantum entanglement on current material science and altering technology potential.

References

Aspect, A., & Grangier, P. (2005). Quantum entanglement and the foundations of quantum mechanics. Physics Today, 58(7), 50-55.

Gisin, N., & Thew, R. (2006). Quantum communication. Nature Photonics, 1(3), 165-171.

Ma, X., Zotter, S., Kofler, J., Ursin, R., Jennewein, T., Briegel, H. J., & Zeilinger, A. (2012). Experimental delayed-choice entanglement swapping. Nature Physics, 8(6), 480-485.

Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., & Wehner, S. (2014). Bell nonlocality. Reviews of Modern Physics, 86(2), 419-478.

Pan, J. W., Chen, Z. B., Lu, C. Y., Weinfurter, H., Zeilinger, A., & Zukowski, M. (2012). Multiphoton entanglement and interferometry. Reviews of Modern Physics, 84(2), 777-838.

Hensen, B., Bernien, H., Dréau, A. E., Reiserer, A., Kalb, N., Blok, M. S., & Hanson, R. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575), 682-686.

Pfister, O., & Yuen, H. P. (2007). Quantum entanglement in continuous variables. Reviews of Modern Physics, 79(4), 1351-1373.

Pironio, S., Acín, A., Massar, S., de La Giroday, A. B., Matsukevich, D. N., Maunz, P., & Monroe, C. (2010). Random numbers certified by Bell’s theorem. Nature, 464(7291), 1021-1024.

Reid, M. D., Drummond, P. D., Bowen, W. P., Cavalcanti, E. G., Lam, P. K., Bachor, H. A., & Walls, D. F. (2009). Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications. Reviews of Modern Physics, 81(4), 1727-1751.

Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301-1350.

Brukner, Č., & Zeilinger, A. (2006). Quantum physics as a science of information. Complexity, 10(1), 35-43.

Kim, Y. H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed "choice" quantum eraser. Physical Review Letters, 84(1), 1-5.

Acín, A., Gisin, N., & Masanes, L. (2006). From Bell’s theorem to secure quantum key distribution. Physical Review Letters, 97(12), 120405.

Dehlinger, D., & Mitchell, M. W. (2002). Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory. American Journal of Physics, 70(9), 903-910.

Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67(6), 661-663.

Horodecki, R., Horodecki, P., Horodecki, M., & Horodecki, K. (2009). Quantum entanglement. Reviews of Modern Physics, 81(2), 865-942.

Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6-7), 467-488.

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). IEEE.

Jozsa, R., & Linden, N. (2003). On the role of entanglement in quantum-computational speed-up. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2036), 2011-2032.

Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O’Brien, J. L. (2010). Quantum computers. Nature, 464(7285), 45-53.

Downloads

Published

2017-12-29

How to Cite

Anil Kumar. (2017). Quantum Entanglement and Non-Locality: Experimental Advances and Theoretical Implications. Innovative Research Thoughts, 3(10), 315–319. Retrieved from https://irt.shodhsagar.com/index.php/j/article/view/1401