
© INNOVATIVE RESEARCH THOUGHTS | Refereed | Peer Reviewed | Indexed

ISSN : 2454 – 308X | Volume : 04 , Issue : 05 | April 2018

 95

Comparative study of row major ordering and column major

ordering in accessing elements of 2 Dimensional Arrays

Yogita Yashveer Raghav, Assistant professor, K.R Mangalam University, SohnaRoad, Gurgaon

ygtraghav@gmail.com

Abstract : The main focus of this paper is to

compare the execution time between row

major ordering and column major ordering

for accessing matrix elements. The aim is to

design a program, which generates two

matrices with various dimensions, and

accessing the matrix elements using both

ways row major and column major

ordering.. The execution time of each

algorithm is recorded to evaluate the

performance of each algorithm. The

programming language used this project is C

Language. The overall finding is that the row

major ordering algorithm is more efficient

than column major ordering on large size of

matrices. However, in scientific computing,

memory has to be considered. To implement

this we need need large size of matrix.

 Keywords: Row major ordering, Column

major ordering, Two-dimensional arrays

Introduction: Before starting discussion about

multi-dimensional array, we need to know

about the functioning of one dimensional

array, like how the elements are stored and

accessed .For batter understand of this we will

understand it with an example:

A1, A2, A3….An are the contents that I need

to store in one dimensional array, so it will be

stored as shown in the figure 1.

Figure 1

One thing you need to remember is, no matter

what type of array it is (1D or multi-

dimensional), they will be always stored

linearly in the memory space as above.

For accessing 1D

elements we need the

index, or number at

which the element is

stored. For example if

we need to store any value at the 4
th
 position in

the array then the syntax in C language would

be like:

A [4] =10;

To find the address of any element in one

dimensional array is very easy. Just we need to

know the Base address and the type of

elements that are stored in array. Suppose the

element of which we need to find the address

is 6 th element of array. We assume that the

base address is 1000, and type is integer, then

Address of 6
th

 element= 1000+6*2=1012

Two-dimensional arrays are generally

arranged in memory in row-major order (for C,

Pascal etc) or column-major order (for

FORTRAN).

Let’s jump to the case of multi-dimensional

arrays now. Imagine I’ve a 3×3 matrix like

this:

Figure 2

The real problem of storing elements arises

here, since elements have to be stored linearly

© INNOVATIVE RESEARCH THOUGHTS | Refereed | Peer Reviewed | Indexed

ISSN : 2454 – 308X | Volume : 04 , Issue : 05 | April 2018

 96

in the memory space, we have many possible

ways to store them. Here are some of the

possibilities I could’ve had for the matrix

above.

1. M11 M13 M12 M21 M23 M22 M31 M33

M32 M33

2. M11 M22 M33 M12 M32 M13 M23 M31

M32 M21

… and I could go on filling randomly

depending on the no. of elements I’ve in my 2-

D array. Out of all these possible ways, there

are two main ways of storing them, they are:

Row Major Ordering

Column Major Ordering

Row Major Ordering:

In this method, the elements of an array are filled

up row-by-row such that the first row elements

are stored first, then the second row and so on.

Most of the high level programming languages

like C/C++, Java, Pascal, etc uses this method

for storing multidimensional arrays.

As you can see in the 3×3 Matrix array we have

above, I want to know at what position is my

element A12 located in the linear memory space.

This position is called the OFFSET.

One way to do it is to make up a linear diagram

like the one below, count manually using 0 as the

starting index and go on till the element I need.

But imagine you are given an array like

A[20][40], definitely you can’t go over all these

elements if you wanted to know, say where

A[15][20] is located.

Figure 3

For this, we resort to a fairly easy mathematical

method of calculating the offset. Here is the

formula to calculate the offset for row major

ordering.

Offset for row major ordering

We will elaborate it with the help of a example.

Consider we want to search the address of

element [2][1].First count how many rows and

columns we have crossed, 2 rows and 1 column,

then how many cells in each row i.e. 3,so 2*3=6

and column =1 so 6+1=7.So total 7 cells are

there. So multiply it with 2 or 4 whatever the

storage size of data type .Here we consider it 2

so 7*2=14, add it with the Base address, here we

consider it 1000.

Address of [2][1]=(2*3+1)*2+1000 =1014.

 Column Major Method

In Column Major ordering, all the elements of

the first column are stored first, then the next

column elements and so on till we are left with

no columns in our 2-D array.

Figure 4

Offset for column major method

Calculating address of a particular element

Depending on the ordering method the elements

are stored in the memory, we will get different

positions of an element in the linear memory and

consequently a different address for each

method. To calculate the address we use the

following procedure:

Step 1: Get the offset value of the element under

consideration; make sure you use the correct

formula.

Step 2: Multiply the offset with the size of the

element’s data type.

Step 3: Add this to the base address to get the

final address.

© INNOVATIVE RESEARCH THOUGHTS | Refereed | Peer Reviewed | Indexed

ISSN : 2454 – 308X | Volume : 04 , Issue : 05 | April 2018

 97

We will elaborate it with the help of a example.

Consider we want to search the address of

element [2][3].First count how many rows and

columns we have crossed, 2 rows and 3 column,

then how many cells in each column i.e. 3,so

3*3=6 and rows =2 so 6+2=8.So total 8 cells are

there. So multiply it with 2 or 4 whatever the

storage size of data type .Here we consider it 2

so 8*2=16,add it with the Base address, here we

consider it 1000.

Address of [2][3]=(3*3+2)*2+1000 =1022.

Performance analysis of Row major and

Column major order of accessing arrays

elements in C Program

In computing, row-major order and column-

major order are methods for storing

multidimensional arrays in linear storage such as

random access memory.

The two mentioned ways differ from each other

with respect to the order in which elements are

stored contiguously in the memory. The elements

in row-major order are arranged consecutively

along the row and that in the column-major order

are arranged consecutively along the column

As exchanging the indices of an array is the

essence of array transposition, an array stored

as row-major but read as column-major (or vice

versa) will appear transposed. As actually

performing this rearrangement in memory is

typically an expensive operation, some systems

provide options to specify individual matrices as

being stored transposed. The programmer must

then decide whether or not to rearrange the

elements in memory, based on the actual usage

(including the number of times that the array is

reused in a computation).

Note that the difference between row-major and

column-major order is simply that the order of

the dimensions is reversed. Equivalently, in row-

major order the rightmost indices vary faster as

one steps through consecutive memory locations,

while in column-major order the leftmost indices

vary faster.

Below program illustrates that row major order

storing of arrays in C is more efficient than

column-major order (though Pascal and

FORTRAN follows column major order):

#include <stdio.h>

#include <time.h>

int sample[1000][1000];

void main()

{

int i, j;

clock_t start, stop;

double d = 0.0;

start = clock();

for (i = 0; i < 1000; i++)

for (j = 0; j < 1000; j++)

sample[i][j] = sample[i][j] + (sample[i][j] *

sample[i][j]);

d = (double)(stop - start) /

CLOCKS_PER_SEC;

printf("The run-time of row major order is

%lf\n", d);

start = clock();

for (j = 0; j < 1000; j++)

for (i = 0; i < 1000; i++)

sample[i][j] = sample[i][j] + (sample[i][j] *

sample[i][j]);

stop = clock();

d = (double)(stop - start) /

CLOCKS_PER_SEC;

printf("The run-time of column major order is

%lf", d);

}

OUTPUT:

Conclusion: Performance depends upon the

way that how we are going to access the

elements and how the elements of matrix

are represented and stored in memory.

Often a matrix is stored in row-major order, so

that consecutive elements of a row are

contiguous in memory. Reading memory in

contiguous locations is faster than jumping

around among locations. As a result, if the

https://en.wikipedia.org/wiki/Transpose
https://en.wikipedia.org/wiki/In-place_matrix_transposition

© INNOVATIVE RESEARCH THOUGHTS | Refereed | Peer Reviewed | Indexed

ISSN : 2454 – 308X | Volume : 04 , Issue : 05 | April 2018

 98

matrix is stored in row-major order, then

iterating through its elements sequentially in

row-major order may be faster than iterating

through its elements in column-major order.

Of course, if the matrix is stored in column-

major order then iterating through its elements

sequentially in column-major order may be

faster than iterating through its elements in

row-major order.

References:

[1] Juby Mathew, 2 Dr. R Vijaya

Kumar,Comparative Study of Strassen’s

Matrix Multiplication Algorithm, ISSN : 0976-

8491 (Online) | ISSN : 2229-4333 (Print),

IJCST Vol. 3, Issue 1, Jan. - March 2012

[2] D. G. Shin, and K. B. Irani,

“Fragmenting

relations horizontally using knowledge

based

approach,” IEEE Transactions on Software

Engineering (TSE), Vol. 17, No. 9, pp.

872–883, 1991.

[3] https://www.geeksforgeeks.org

[4] http://www.cbseguy.com

[5] www.researchgate.net

[6] www.programmingsimplified.com

[7] https://en.wikipedia.org.

https://www.geeksforgeeks.org/
http://www.cbseguy.com/
http://www.researchgate.net/

