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MATHEMATICAL MODELLING IN ECOLOGY 
AANCHAL 

 

ABSTRACT: 

Most ecological and evolutionary problems have their basis in changes in the 

number of organisms. This is one reason why mathematics is an important tool 

for ecologists and evolutionary biologists. Another one is the overwhelming 

complexity of ecological systems. An ecosystem often contains hundreds or 

thousands of species that interact in a complex food web. All species are 

different and they change continuously - evolution never stops! By formulating 

mathematical models of ecological and evolutionary processes we can to some 

extent study the behavior and even understand systems that are this complex. 

INTRODUCTION: 

Ecology is the science which deals with interactions between living organisms and their environment. 

Historically it has focused on questions such as: 

 Why do we observe certain organisms in certain places and not others? 

 What limits the abundances of organisms and controls their dynamics? 

 What causes the observed groupings of organisms of different species, called the community, to vary 

across the planet? 

 What are the major pathways for movement of matter and energy within and between natural systems? 

Historically, mathematical models in ecology have been used largely to provide qualitative 

explanations for patterns in nature. A classic example of this approach was the effort to use competition 

models to explain species diversity (Diamond and Case, 1986). Simple competition models showed 

that species that utilized the same resource can coexist under the right circumstances (Begon et 

al.,1996). This theoretical observation, however, leads to much controversy over the general issue of 

whether competition structures natural communities. 

 

This kind of general statement about nature is arguably of little importance for problems of resource 

management. Perhaps as a consequence, modeling efforts in many applied fields, especially pest 

management, have often rejected simple mathematical models in favor of giant simulation models 

(Onstad, 1988). Simulation models have hundreds of parameters and state variables, take years to 

construct, and are often so complex that they can take pages to describe. Such models represent the 

opposite extreme from the simple models used in academic research, in that they attempt to sacrifice 

understandability for ecological realism. 

 The last few decades, however, have seen increased interest in applied questions among academic 

ecologists, and the resulting research has begun to suggest an alternative use for simple mathematical 

models (Hilborn and Mangel, 1996). Specifically, simple mathematical models can be used as 

statistical hypotheses much as linear models have been used in classical statistics 

 Moreover, current research suggests that many sets of ecological data cannot statistically justify 

complex models. That is, although nature may appear to be complicated, real data often cannot prove 

that more complicated models give a better description than simpler models (Hilborn and Mangel, 

1996). Whether this is because nature really is simple, or because our data are noisy, is irrelevant for 

many practical purposes. The fact is that, if we want useful quantitative descriptions of nature, it is 

typically the case that we need fewer than 10 parameters 

 Current work in ecological modeling thus emphasizes close connections between theory and data, and 

the use of mathematical models as statistical hypotheses about nature. As a result, models that were 

once viewed as being of only intellectual interest may well become useful in pest management. To 

make this point concrete, I will review my own work on a virus disease of a forest pest, the gypsy 

moth Lymantria dispar. 
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 Ecological models of insect diseases began with a simple model by Anderson and May (1981), which 

started with a model for human epidemics and added population dynamics of insects and pathogens. 

Anderson and May used the model to make the general point that pathogens may drive the dynamics of 

forest insects capable of significant outbreaks such as the larch budmoth, Zeiraphera diniana. Further 

research on this and other insects has instead suggested first that single-factor explanations for forest 

insect population dynamics are probably generally insufficient, and second that pathogens are not 

always important players in the population dynamics of forest insects (Hunter and Dwyer, 1998). 

Nevertheless, even though the original generalization is too sweeping, features of Anderson and May's 

model have been useful for understanding insect pathogens. 

 Specifically, Anderson and May's model assumed that the rate of horizontal transmission of the virus 

increases linearly with the density of the pathogen. This assumption provided a useful quantitative 

hypothesis, and it is nonetheless interesting even though data show that it is often incorrect. For 

example, data for the transmission of the gypsy moth virus reject a linear model but cannot reject a 

nonlinear model (Dwyer et al., 1997). Additional experiments, however, suggested that this 

nonlinearity arises because of variability among the host insects in their susceptibility to the virus, and 

a model that allows for this variability can accurately predict the timing and intensity of virus 

epidemics (or epizootics) in naturally occurring gypsy moth populations. Surprisingly, the resulting 

model requires only four parameters. 

 Although this model arose from efforts to answer questions of basic research, it is beginning to have 

practical applications. For example, efforts are being made to genetically engineer this and other 

viruses. Consequently, a question of environmental concern is, “Will engineered virus strains 

outcompete wild-type strains, thereby altering the ecological balance between host and pathogen?” 

Because the model can predict epidemics from experimental transmission data, it can be used to assess 

the risks of releasing engineered strains before any such strains have been released (Dwyer et al., in 

press). Preliminary work has suggested that at least one deletion mutant of the gypsy moth virus is 

unlikely to be a superior competitor, and work is now advancing to apply the model to assess 

commercially produced strains of the nuclear polyhedrosis virus of the cabbage pest Trichoplusia ni. 

More concretely, gypsy moth populations tend to be very patchily distributed, so that a major challenge 

for managers is identifying which populations need to be controlled and which are likely to collapse. 

Because the virus model can be used to predict which populations are likely to have severe virus 

epidemics, it can assist in identifying which populations are likely to collapse. 

These studies demonstrate several advantages of using simple mathematical models. First, compared to 

the logistic expenses of performing experiments and collecting data, the cost of constructing, 

simulating, and analyzing models is very low. Second, models can allow us to extrapolate between 

small-scale field and lab measurements and the dynamics of populations. The gypsy-moth-virus model, 

for example, uses as input only the initial density and frequency of infection of gypsy moths in the 

field, and measurements of disease transmission and kill rates from small-scale lab and field 

experiments. The model can nevertheless predict the timing and intensity of virus epidemics in 

naturally occurring gypsy moth populations on 3–10 hectare plots with great accuracy across a wide 

range of densities (Dwyer et al., 1997; Dwyer et al., in press). This ability to extrapolate across scales 

means that the model can be used to predict the outcome of large-scale releases of engineered viruses 

from measurements before such releases are carried out. Third, by focusing on simple explanations for 

what superficially appear to be complex natural phenomena, simple mathematical models provide 

useful testable hypotheses. Moreover, the success of the gypsy-moth-virus model, which includes only 

four parameters, suggests that many natural phenomena are simpler than they initially appear 

Mathematics, as the language of science, allows us to carefully phrase questions concerning each of the 

above areas of ecology. It is through mathematical descriptions of ecological systems that we abstract 

out the basic principles of these systems and determine the implications of these. Ecological systems 

are enormously complex. A major advantage of mathematical ecology is the capability to selectively 

ignore much of this complexity and determine whether by doing so we can still explain the major 

patterns of life on the planet. Thus simple population models group together all individuals of the same 
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species and follow only the total number in the population. By ignoring the complexity of differences 

in physiology, size, and age between individuals, the models attempt to compare the basic dynamics 

obtained from the model with observations on different species. As a next step, additional complexity, 

associated with introducing different age classes for example, is included. How the inclusion of such 

additional complexity affects the predictions of the model determines whether this additional 

complexity is necessary to answer the biological questions you are interested in. 

Mathematical models in physiological ecology are often compartmental in form, in which the 

organism is assumed to be composed of several different components. For example, many plant growth 

models consider leaves, stem and roots as different compartments. The models then make assumptions 

about how different environmental factors affect the rate of change of biomass or nutrients in different 

compartments. These models are typically framed as systems of differential equations with one 

equation for each compartment. Population models are used to determine the effects of different 

assumptions about the age, size, or spatial structure of a population on the dynamics of the population. 

Mathematical approaches include differential equations (both ordinary and partial), integral equations, 

and matrix theory. Models for communities are often framed as systems of ordinary differential 

equations, with separate equations for each of the interacting populations. Additional models apply 

graph theory to elucidate the topological structure of food webs, the links which determine who eats 

who in a particular community. 

 The above has focused on the use of mathematics to formulate basic theory in ecology. There are also 

many applications of mathematical and computer models to very practical questions arising from 

environmental problems. This includes the entire field of ecotoxicology, in which mathematical models 

predict the effects of environmental pollutants on populations and communities. The field of natural 

resource management uses models to help set harvest quotas for fish and game, based upon population 

models similar in form to those mentioned above. Conservation ecology uses models to help determine 

the relative effects of alternative recovery plans for endangered species, as well as aid in the design of 

nature preserves. 

Modeling is vitally important in making ecological predictions, and whether this takes the form of 

abstract mathematical equations or computer simulations, the basis is still mathematical. Quantifying 

ecological data is often done with metrics that turn raw measurements into ecologically relevant 

information. Statistics is also extremely important in ecology, since we have so much data to crunch; 

many of the greatest advances in 20th century statistics came about thanks to ecologists. 

 

Since math is so ubiquitous in ecology, I'll just give a few simple, unsophisticated models from one 

field in ecology: Population dynamics. 

dx/dt=x(α−βy)dx/dt=x(α−βy) 

 

dy/dt=−y(γ−δx)dy/dt=−y(γ−δx) 

 

These are the Lotka-Volterra equations of population dynamics. xx is prey, yy is predators, and the rest 

are constants describing their simple interactions. 

 

The basis of these equations is the idea that population change is birth rate minus death rate (assuming 

no migration). An increase in the prey population will provide more food for predators, causing their 

population to increase; this puts more strain on prey, causing their populations to decrease, and 

predators to follow. 

Obviously, the equations are a bit of an idealization. Ecologists have more sophisticated models - 

models that take into account the fact that prey don't have an unlimited food supply, that weather 

conditions may change unpredictably over time, that populations evolve, and that there's a hint of 

randomness to any natural process. But the Lotka-Volterra equations were a vital stepping stone to 

these models, and the fact that they reflect the periodicity of real-life population dynamics so well is a 

testament to their success. 
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Another mathematically interesting population dynamics model - this time, involving just one species - 

is the logistic map, most notably studied by mathematical biologist Robert May. 

Being able to make mathematical predictions about ecological phenomena is essential, because these 

models inform us about what we should do to resolve problems and conserve biodiversity. Without 

them, we would just be groping through the dark. 

 

Of course, the kinds of math one uses depend on the problems one wants to study. Pollination experts 

may use graph theory to model plant-pollinator networks. Evolutionary ecology often requires 

phylogeny reconstruction, which uses linear algebra. But nearly all ecologists use math, and most 

regret not taking more. 

 

Modeling ecological complexity 

The greatest challenge today, not just in cell biology and ecology but in all of science, is the accurate 

and complete description of complex systems. Scientists have broken down many kinds of systems. 

They think they know most of the elements and forces. The next task is to reassemble them, at least in 

mathematical models that capture the key properties of the entire ensembles. (Wilson 1998, p. 85) 

As ecology has matured, our conceptual and theoretical models for how the world works have evolved 

from the very simple to the very complex (Levin et al. 1997). Simple models that ignore individual and 

environmental variation, species interactions, and transient dynamics try to capture generalities about 

systems and offer analytical tractability. However, these models are often insufficient for predicting 

realistic temporal and spatial patterns. Advances in mathematics, statistics, and computation help us to 

assess more fully the consequences of such simplifications and to incorporate more realism. In many 

situations, this translates into more complex models. 

A challenge in modeling any system is the choice of level of detail. The challenge resides in identifying 

which details at one level of organization are driving phenomena at other levels, and which details can 

be ignored. In many cases, developing a suite of complementary models operating at different scales 

and levels of complexity will help elucidate the mechanisms underlying observed macroscopic 

patterns. However, building more detailed and complex models is not always better. Complexity 

typically demands additional data and computation time, and makes model results difficult to analyze. 

Researchers need tools for identifying the situations in which building detailed models will increase 

our ability to understand and predict the structure and dynamics of ecological systems. For example, 

recent statistical advances based on model selection (box 1) show substantial promise for 

distinguishing among alternative ecological hypotheses and theories. In general, situations that call for 

more detailed models will either require mathematical approximations of added complexity or 

advances in computer science that allow more efficient computation. In the following sections, we 

describe three areas in which advances in computational science may improve ecological theory by 

providing ways to incorporate increased biological complexity. 

The advantages of simple models should theoretically be even greater in pest management. This is 

because questions of ecological research can often be phrased somewhat qualitatively, whereas 

questions of pest management research are ultimately economic and thus inescapably quantitative. I 

would therefore argue that the infrequent use of mathematical models in pest management is due to an 

overemphasis on complex simulation models. In addition to being more difficult to understand, such 

models are inherently more expensive than the simple models that I advocate here. Complex simulation 

models are therefore less likely to be tested, and in turn are less likely to be discarded in favor of better 

models. Hopefully simple mathematical models will eventually come to be as useful in pest 

management as they are in ecological research. 
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