
© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

1

Analysis of Automated Testing tools and their implementation

Abstract— A primary purpose of testing is to detect software failures so that defects may be

discovered and corrected. Testing cannot establish that a product functions properly under all

conditions but can only establish that it does not function properly under specific conditions. The

scope of software testing often includes examination of code as well as execution of that code in

various environments and conditions as well as examining the aspects of code: does it do what it

is supposed to do and do what it needs to do.

Keywords- Automation testing; testing tools,matlab,mlunit

__*****___

I. INTRODUCTION

Automation Testing means using an automation tool to execute

your test case suite. The automation software can also enter

test data into the System under Test, compare expected and

actual results and generate detailed test reports.

Test Automation demands considerable investments of money

and resources. Successive development cycles will require

execution of same test suite repeatedly.

Using a test automation tool it's possible to record this test

suite and re-play it as required. Once the test suite is

automated, no human intervention is required. This improved

ROI of Test Automation.

Goal of Automation is to reduce number of test cases to be run

manually and not eliminate manual testing all together.

Test automation may be able to reduce or eliminate the cost of

actual testing. A computer can follow a rote sequence of steps

more quickly than a person, and it can run the tests overnight to

present the results in the morning. However, the labor that is

saved in actual testing must be spent instead authoring the test

program.

 Depending on the type of application to be tested, and the

automation tools that are chosen, this may require more labor

than a manual approach. In addition, some testing tools present

a very large amount of data, potentially creating a time

consuming task of interpreting the results.

Things such as device drivers and software libraries must be

tested using test programs. In addition, testing of large numbers

of users (performance testing and load testing) is typically

simulated in software rather than performed in practice.

II. SELECTION OF AUTOMATION TOOLS

Selecting the right tool can be a tricky task. Following criterion

will help you select the best tool for your requirement-

 Environment Support

 Ease of use

 Testing of Database

 Object identification

 Image Testing

 Error Recovery Testing

 Object Mapping

 Scripting Language Used

 Support for various types of test - including

functional, test management, mobile, etc...

 Support for multiple testing frameworks

 Easy to debug the automation software scripts

 Ability to recognize objects in any environment

 Extensive test reports and results

 Minimize training cost of selected tools

Tool selection is one of biggest challenges to be tackled
before going for automation. First, identify the requirements,

explore various tools and its capabilities, set the expectation

from the tool and go for a Proof of Concept.

http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Software_library
http://en.wikipedia.org/wiki/Software_performance_testing
http://en.wikipedia.org/wiki/Load_testing
user
Typewritten Text
Ms. Minal K. Avzekar

user
Typewritten Text

© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

2

III. FRAME WORK

A. Framework in Automation

A framework is set of automation guidelines which help

in

 Maintaining consistency of Testing

 Improves test structuring

 Minimum usage of code

 Less Maintenance of code

 Improve re-usability

 Non Technical testers can be involved in code

 Training period of using the tool can be reduced

 Involves Data wherever appropriate

B. Type of Framework

There are four types of framework used in software

automation testing:

1. Data Driven Automation Framework

2. Keyword Driven Automation Framework

3. Modular Automation Framework

4. Hybrid Automation Framework.

IV. BENEFITS OF AUTOMATION TESTING

 Following are benefits of automated testing:

 70% faster than the manual testing

 Wider test coverage of application features

 Reliable in results

 Ensure Consistency

 Saves Time and Cost

 Improves accuracy

 Human Intervention is not required while execution

 Increases Efficiency

 Better speed in executing tests

 Re-usable test scripts

 Test Frequently and thoroughly

 More cycle of execution can be achieved through

automation

 Early time to market

V. PROPOSED IMPLEMENTATION

Software engineering Automated Software Testing for

Matlab Software testing can improve software quality. To

test effectively, scientists and engineers should know how

to write and run tests, define appropriate test cases,

determine expected outputs, and correctly handle floating-

point arithmetic.

Using Matlab mlUnit automated testing framework,

scientists and engineers using Matlab can make software

testing an integrated part of their software development

routine.

A. Write Unit Tests

Assemble test methods into test-case classes

B. Script-Based Unit Tests

Write Script-Based Unit Tests

C. Function-Based Unit Tests

 Write Function-Based Unit Tests

 Write Simple Test Case Using Functions

 Write Test Using Setup and Teardown Functions

D. Class-Based Unit Tests

 Author Class-Based Unit Tests in MATLAB

 Write Simple Test Case Using Classes

 Write Setup and Teardown Code Using Classes

 Tag Unit Tests

 Write Tests Using Shared Fixtures

 Create Basic Custom Fixture

 Create Advanced Custom Fixture

 Create Basic Parameterized Test

 Create Advanced Parameterized Test

E. Run Unit Tests
Run test suites in the testing framework

 All tests in a package

 All tests in a class

 All tests in a folder

 Analyze Test Results

 Analyze Test Case Results

 Analyze Failed Test Results

© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

3

VI. IMPLEMENTATION OF AUTOMATED TESTING IN MATLAB

USING MLUNIT

mlunit originally began as an update to mlUnit

(http://sourceforge.net/projects/mlunit/), also available from

MATLAB Central file exchange.

The purpose was to add support for the new "classdef" style

classes in MATLAB 2008a. Creating tests involves

subclassing a class named TestCase, then adding methods

whose names begin with "test". Inside each method you can

use the inherited validation methods (assert, assertEquals,

assertNotEquals) to check for success or failure. All tests are

run automatically and their results recorded and reported after

the run.

Testing Fibonacci function

We all know the Fibonacci series

0 1 1 2 3 5 8 13

In which we always consider the sum of last two number at

third location

Loc1 0

Loc2 1

Loc3 1(Loc1 + Loc2)

Loc4 2(Loc2 + Loc3)

Loc5 3(Loc3 + Loc4)

Loc6 5(Loc4 + Loc5)

Loc7 8(Loc5 + Loc6)

Loc8 13(Loc6 + Loc7)

fib(x)

function y = fib(x)

% Simple queue implementation of Fibonacci function..

if x < 0 || (int64(x) ~= x)

 error('invalid input: please input only non-negative

integers.');

end

if x < 2, y = x; return;

end

q = [0 1];

for k = 2:x

 q = [q sum(q)];

 q(1) = [];

end

y = q(2);

when we call fib function

Fig. 1

When assert is used with fib function

Fig. 2

Testing fib using mlunit

test_fib.m

function self = test_fib(name)

%test_fib constructor.

%

% Class Info / Example

% ====================

% The class test_fib is the fixture for all tests of the test-

driven

% Fibonacci. The constructor shall not be called directly, but

through

% a test runner.

tc = test_case(name);

self = class(struct([]), 'test_fib', tc);

test_null.m
function self = test_null(self)

%test_null checks, whether the return value of fib(0) is 0.

assert_equals(0, fib(0));

test_value.m
function self = test_value(self)

%test_value tests different values of the fibonacci function (y

= fib(x)).

assert_equals(1, fib(1));

assert_equals(1, fib(2));

assert_equals(2, fib(3));

assert_equals(3, fib(4));

assert_equals(5, fib(5));

assert_equals(8, fib(6));

assert_equals(13, fib(7));

assert_equals(21, fib(8));

© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

4

assert_equals(34, fib(9));

assert_equals(55, fib(10));

test_value1.m
function self = test_value1(self)

%test_value1 tests different values of the fibonacci function (y

= fib(x)).

assert_equals(0, fib(1));

After Running mlunit test result will be as follow

after testing following xml file is creating representing

failures, errors, testcases, time take to test

TEST-@test_fib.xml
<?xml version="1.0" encoding="UTF-8"?>

<testsuite name="@test_fib" errors="0" failures="1" tests="3"

time="0.428" hostname="unknown" timestamp="2015-04-

23T14:33:46">

 <properties/>

 <testcase classname="@test_fib" name="test_null"/>

 <testcase classname="@test_fib" name="test_value"/>

 <testcase classname="@test_fib" name="test_value1">

 <failure><![CDATA[Data not equal:

 Expected : 0

 Actual : 1

In <a href = "matlab:opentoline

('C:\Users\aa\Documents\MATLAB\mlunit\test\@test_fib\test

_value1.m',10)">test_value1.m at line 10]]></failure>

 </testcase>

 <system-out/>

 <system-err/>

</testsuite>

VII. FUTURE SCOPE

Manual Testing of all work flows, all fields, all negative
scenarios is time and cost consuming

It is difficult to test for multi lingual sites manually.

Automation does not require Human intervention.

 You can run automated test unattended (overnight).

Automation increases speed of test execution.

Automation helps increase Test Coverage.
Manual Testing can become boring and hence error prone.

VIII. CONCLUSION

Automation Testing is use of tools to execute test cases

whereas manual testing requires human intervention for test

execution.

Within the automotive area, very little upfront testing has been

done. With the introduction of executable modeling tools such

as MLUnit this upfront testing is more feasible. It is the job of

the tool vendors to make this testing technology available and

practical to the end user.

Automation Testing saves time, cost and manpower. Once

recorded, it's easier to run an automated test suite when

compared to manual testing which will require skilled labor.

Any type of application can be tested manually but

automated testing is recommended only for stable
systems and is mostly used for regression testing. Also, certain

testing types like ad-hoc and monkey testing are more suited

for manual execution.

Manual testing can be become repetitive and boring. On the

contrary, the boring part of executing same test cases time and

again is handled by automation software in automation testing.

IX. REFERENCES

[1]Artem, M., Abrahamsson, P., & Ihme, T. (2009). Long-

Term Effects of Test-Driven Development A case study. In:

Agile Processes in Software Engineering and Extreme

Programming,10th International Conference, XP 2009,. 31,

pp. 13-22. Pula, Sardinia, Italy: Springer.

[2] Bach, J. (2000, November). Session based test

management. Software testing and quality engineering

magzine(11/2000),

(http://www.satisfice.com/articles/sbtm.pdf).

[3] Bach, J. (2003). Exploratory Testing Explained, The Test

Practitioner 2002,

(http://www.satisfice.com/articles/et-article.pdf).

[4] Bach, J. (2006). How to manage and measure exploratory

testing. Quardev Inc.,

(http://www.quardev.com/content/whitepapers/how_measure_

exploratory_testing.pdf).

http://www.satisfice.com/articles/sbtm.pdf
http://www.satisfice.com/articles/et-article.pdf
http://www.quardev.com/content/whitepapers/how_measure_exploratory_testing.pdf
http://www.quardev.com/content/whitepapers/how_measure_exploratory_testing.pdf

© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

5

[5] Basilli, V., & Selby, R. (1987). Comparing the

effectiveness of software testing strategies. IEEE Trans.

Software Eng., 13(12), 1278-1296.

[6] Berg, B. L. (2009). Qualitative Research Methods for the

Social Sciences (7th International Edition) (7th ed.). Boston:

Pearson Education.

[7] Bernat, G., Gaundel, M. C., & Merre, B. (2007). Software

testing based on formal specifications: a theory and tool.

In:Testing Techniques in Software Engineering, Second

Pernambuco Summer School on Software Engineering. 6153,

pp. 215-242. Recife: Springer.

[8] Bertolino, A. (2007). Software Testing Research:

Achievements Challenges Dreams. In:International

Conference on Software Engineering, ISCE 2007, (pp. 85-

103). Minneapolis:IEEE.

[9] Causevic, A., Sundmark, D., & Punnekkat, S. (2010). An

Industrial Survey on Contemporary Aspects of Software

Testing. In: Third International Conference on Software

Testing, Verification and Validation (pp. 393-401). Paris:

IEEE Computer Society.

[10] Chillarege, R. (1999). Software Testing Best Practices.

Tehcnical Report RC2145, IBM.

