
© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

 18

OOPS BASED AUTOMATED Testing in Matlab

Ms. Minal K. Avzekar

Abstract: Validation and verification of the code is needed due to ever-increasing

complexity of embedded software applications, and the emergence of safety critical

applications. Many embedded software development groups are using models and

doing upfront engineering before testing on the final product to address this need,.

Use of old style of testing late in the development cycle resulted in very expensive

release cycles.

I. Introduction[1]

Object-oriented technology has become more and
more popular in several various contexts. The Object-
oriented paradigm is applied in the areas of
programming languages, user interfaces, databases,
design and specification methodologies.

OOPS based languages are widely applied in
industry, and several commercial applications are
developed and designed and with object oriented
technology.

Object-oriented software quality has undergone a
rapid change during the last years as a consequence,
the attitude towards
Several analysis and design methodologies state that
a well-designed object-oriented system would only
need minimal testing. The object oriented paradigm
has been considered powerful enough to assure
software quality without any additional effort.

It is not enough to guarantee the quality of software
products although object-orientation enforces many
important programming principles, such as
modularity, encapsulation, and information hiding,

Object oriented software contains errors just like
traditional code it is known to both practitioners and
researchers. Due to their peculiarities object oriented
systems present new and different problems with
respect to traditional programs.

II. Research Addressing Quality

Assessment

 Research addressing quality assessment lead to the
definition of specific object-oriented metrics. These
metrics provide quality indicators for identifying
parts of the system which are more likely to be error-
prone.
Quality of object-oriented software has been
addressed from two different viewpoints, namely,

quality assessment and
quality achievement in
the last years,

When the level of quality of a class, a cluster of
classes, or a system is inadequate, we need a way of
improving it, Quality assessment methods are
complementary to quality achieving techniques. As
far as quality achievement is concerned, it is possible
to identify two main approaches:
Methodology based: These methodologies pay little
attention to verification of the developed system,
according to the underlying hypothesis that a suitable
application of the methodology should lead to well
designed systems, which are easy to maintain.
This methodology involves using techniques and
methodologies that aim at improving the software
development process and specifically address the
analysis, design, and development of object-oriented
systems.

Verification based: using static or dynamic analysis
techniques that targets revealing faults. The
underlying idea is that, despite the effectiveness of
the process, human beings are error-prone and
program will always contain faults. Examples of
static analysis techniques are formal proofs of
correctness and code inspections and testing
techniques are examples of dynamic techniques.

III. Focus and Contribution of

oops
The object-oriented paradigm introduces novel
aspects that have to be specifically addressed while
sharing some commonalities with traditional
programming languages,

Inheritance, encapsulation and data hiding raise
visibility problems imply incremental testing
concerns, and polymorphism and dynamic binding
introduce undesirability related issues. The structure
of object-oriented software is different from that of
traditional codes.

© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

 19

In object-oriented codes, procedures (methods) tend
to be small and well understood. The complexity
tends to move from within code modules to the
interfaces between them. Testing at the unit level
tends to be less complex in the object-oriented case
than for traditional procedural systems, and
integration testing becomes necessarily more
expensive as a consequence.

IV. Automated Testing: Process,

Planning, Selection of tools[2]

Manual testing is performed by a human in front of a
computer carefully executing the test steps. Using an
automation tool to execute your test case suite is
Automation Testing.

 The automation software can also enter test data into
the System under Test, compare expected and actual
results and generate test reports.

Test Automation demands considerable investments
of money and resources. Successive development
cycles will require execution of same test suite again
and again.

Using a test automation tool it's possible to record
this test suite and re-play it as required. No human
intervention is required once the test suite is
automated. This improved ROI of Test Automation.

Purpose of Automation is to reduce number of test
cases to be run manually and not remove manual
testing all together.

V. Benefits of Automated Testing

Automated testing is essential due to following

reasons:

 Manual Testing is time and cost consuming
 It’s difficult to test for multi lingual sites

manually
 Automation does not need Human

intervention. You can run automated test
unattended (overnight)

 Automation boosts speed of test execution
 Automation helps boosting Test Coverage
 Manual Testing can become boring and

error prone.

 Test Cases to Automate

Test cases to be automated can be selected
using the following criterion to increase the
automation ROI

 High Risk - Business test cases
 Test cases that are executed again and

again
 Test Cases that are very difficult to perform

manually
 Test Cases are time consuming

The following category of test cases are not suitable
for automation:

 Test Cases that are newly designed and
not executed manually at least once

 Test Cases for which the requirements are

changing frequently
 Test cases which are executed on ad-hoc

basis.

VI. Automation Process

Following steps are followed in an Automation
Process

Fig 1.

VII. Implementation of Class in MATLAB[5]

Classification systems and design patterns enable
engineers and scientists to make sense of complex
systems and to reuse efforts by others.

Object-oriented programming (OO) applies to
software development the standard science and
engineering practice of identifying patterns and
defining a classification system describing those
patterns.

http://cdn.guru99.com/images/testautomationprocess.png

© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

 20

The OO approach improves your ability to manage
software complexity—particularly important when
developing and maintaining large applications and
data structures by applying classification systems and
design patterns to programming,

Class[3]

classdef Syntax

Class definitions are blocks of code that are denoted
by the classdef keyword at the beginning and the end
keyword at the end. Files can contain only one class
definition.
The following diagram shows the syntax of a classdef
block. Only comments and blank lines can precede
the classdef key word.

Sample code to define class

classdef clas1
 properties
 x
 end
 methods
 function p=sq(obj)
 p= obj.x*obj.x
 end
 end
 end

when we run above code then result is as follow

Create object of class

>> y=clas1

y =

 clas1

Assign value of property

>> y.x=9

y =

 clas1

accessing member function of class and passing

object as parameter

>> sq(y)

p =

 81

ans =

 81

>>

VIII. Testing using assert keyword

assert_equals(81,sq(y))

p =

 81

Testing by passing wrong value

assert_equals(82,sq(y))

p =

 81

??? Error using ==> mlunit_fail at 34
Data not equal:
 Expected : 82
 Actual : 81

Error in ==> abstract_assert_equals at 115
 mlunit_fail(msg);

Error in ==> assert_equals at 42
abstract_assert_equals(true, expected, actual,
varargin{:});

IX. Creating Test Case for MLUnit [4]

test_cl1.m

function self = test_cl1(name)
%test_cl1 constructor.
%
% Class Info / Example
% ====================
% The class test_cl1 is the fixture for all tests of test-
driven

© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

 21

% cl1. The constructor shall not be called , but
through
% a test runner.
tc = test_case(name);
self = class(struct([]), 'test_cl1', tc);

test_v1

function self = test_v1(self)
y=clas1;
y.x=9;

assert_equals(81,sq(y))
assert_equals(80,sq(y))

Output :

Fig 2.

X. Conclusions

There is a significant need for more upfront
engineering in today’s embedded software design
process. Very little upfront testing has been done
within the automotive area. With the introduction of
executable modeling tools such as MLUnit this
upfront testing is more feasible. It is the work of the
tool vendors to make this testing technology available
and practical to the user.

Reference

1.Object Oriented software testing by Devid C. Kung
http://www.ecs.csun.edu/~rlingard/COMP595VAV/
OOSWTesting.pdf

2. Automated Testing tools
http://www.guru99.com/automation-testing.html

3. Matlab Documentation
http://in.mathworks.com/help/matlab/matlab_oop/get
ting-familiar-with-classes.html

4.ML-Unit Matlab unit Test Framework

http://sourceforge.net/p/mlunit/mlunit/HEAD/tree/tru
nk/

5. Object Oriented programming in Matlab
http://www.ce.berkeley.edu/~sanjay/e7/oop.pdf

6. Artem, M., Abrahamsson, P., & Ihme, T. (2009).
Long-Term Effects of Test-Driven
Development A case study. In: Agile Processes in

Software Engineering and Extreme Programming,

10th International Conference, XP 2009,. 31, pp. 13-
22. Pula, Sardinia, Italy: Springer.

7. Bach, J. (2000, November). Session based test
management. Software testing and quality

engineering magzine(11/2000),
(http://www.satisfice.com/articles/sbtm.pdf).

8. Bach, J. (2003). Exploratory Testing Explained,
The Test Practitioner 2002,
(http://www.satisfice.com/articles/et-article.pdf).

9. Bach, J. (2006). How to manage and measure

exploratory testing. Quardev Inc.,
(http://www.quardev.com/content/whitepapers/how_
measure_exploratory_testing.pdf).

10. Basilli, V., & Selby, R. (1987). Comparing the
effectiveness of software testing strategies.
IEEE Trans. Software Eng., 13(12), 1278-1296.

11. Berg, B. L. (2009). Qualitative Research Methods

for the Social Sciences (7th International Edition)

(7th ed.). Boston: Pearson Education.

12. Bernat, G., Gaundel, M. C., & Merre, B. (2007).
Software testing based on formal specifications: a
theory and tool. In:Testing Techniques in Software

Engineering, Second Pernambuco Summer School on

Software Engineering. 6153, pp. 215-242. Recife:

© INNOVATIVE RESEARCH THOUGHTS | REFEREED | PEER REVIEWED

ISSN : 2458 – 308X | Volume : 03 , Issue : 02 | April - June 2017

 22

Springer.

