
© INNOVATIVE RESEARCH THOUGHTS | Refereed | Peer Reviewed | Indexed

ISSN : 2454 – 308X | Volume : 07 , Issue : 04 | October - December 2021

60

OBJECT ORIENTED MATRICS FOR TEST CASE SELECTION A STUDY

Shivneet Singh

Email id :- redhu.shivneet3@gmail.com

Abstract: A software crisis is a group of issues that have arisen during the process of creating

computer programs. The failure to produce software on schedule, within budget, and meeting

criteria is indicative of a software crisis. Producing high-quality software in the allotted time frame

at a reasonable cost and in a way that fits the demands of the end user is the primary focus of

software engineering. In this study, both classical and OO software metrics have been covered.

Existing software matrix-related research has been discussed. The Levenshtein distance technique

has been used to talk about slicing in this study. Applications of program slicing to certain software

engineering tasks have been discussed in this work. The technique using the suggested distance

mechanism has been explained. Both cases have developed slices. The corresponding matrix for

that scenario has been constructed. There has been some discussion regarding the research's final

results.

Keywords: Software Engineering, Software matrix, OOPS, WMC, DIT, Test case selection

[1] INTRODUCTION

A software project may be developed in a

more orderly, methodical, and disciplined

manner when software engineering

principles are adhered to. One of the primary

focuses of Software Engineering is

increasing efficiency throughout the

development and programming phases.

It's all about being able to plan and budget for

future software projects. Creating products

that meet the needs of the market. Reliable,

efficient, and easy-to-understand software

systems are also being developed. All aspects

of the final software product benefit from this

enhancement.

There is consensus that selecting test cases is

the best way to eliminate extraneous or

redundant data from tests. When the scope of

a specific test case is large, it might have an

effect on the SDLC's overall performance.

Importance of test case selection

Selecting the right set of test cases is essential

to boosting a program's efficiency. It's been

an essential part of our testing efforts.

Testing software takes into account both time

and resource limitations. An important part

of any development process is optimizing the

test suite.

[2] SOFTWARE METRICS

Software Metrics is a term used to measure

the software items i.e. software product,

software process, person involved in

© INNOVATIVE RESEARCH THOUGHTS | Refereed | Peer Reviewed | Indexed

ISSN : 2454 – 308X | Volume : 07 , Issue : 04 | October - December 2021

61

software production or an organization such

as data processing department.

 Broadly software metrics are categorized

into two parts:

1. Product Metrics

2. Process Metrics

Product metrics. are used to evaluate the

program's characteristics. Reliability,

functionality, performance, usability, cost,

size, complexity, and style are all examples

of product metrics.

Process metrics . are used to evaluate the

method through which the software is

obtained. Cost metrics, effort measurements,

progress metrics, and reuse metrics are all

types of process metrics. It's useful for

checking whether a project is on track and for

estimating the size of the finished system.

There have been several software

development approaches such as

1) Function-oriented

2) Object-oriented

3) Component-based

4) Aspect-oriented

Traditional function-oriented metrics

consists of following

1. Line of code (LOC)

2. Token count

3. Halstead’s model

4. McCABE’S cyclomatic metric

Object-oriented metrics consists of

following:

1. Weighted method per class (WMC)

2. Depth of inheritance (DIT)

3. Coupling between objects (CBO)

4. Lack of cohesion method (LCOM)

5. Number of children (NOC)

MOOD’S METRICS consists of

following

1. Method hiding factor (MHF)

2. Attribute hiding factor (AHF)

3. Method inheritance factor (MIF)

4. Attribute inheritance factor (AIF)

5. Coupling factor (CF)

[3] TOOLS AND TECHNOLOGY

Matlab and SPSS software tools will be used

for data analysis. Data will be collected from

the academic environment like books,

internet and will also be tried to get data from

the software industry.

[4] OBJECT ORIENTED MATRICS

Metrics calculate various measures for

projects, packages, types, members, and

constructors. Metrics are guidelines for

where something in the application might

need refinement and changes. Metrics results

can be saved to files in various formats, so

they can be analyzed by spreadsheet tools, or,

for example, sent via e-mail to the

development team as part of the nightly

build.

Weighted method per class (WMC)

All of the class methods' complexity

levels are added together to provide

the WMC metric. It's a measure of the

© INNOVATIVE RESEARCH THOUGHTS | Refereed | Peer Reviewed | Indexed

ISSN : 2454 – 308X | Volume : 07 , Issue : 04 | October - December 2021

62

time and energy needed to create and

sustain a certain kind. Class with a

high WMC is difficult to reuse and

maintain because of its complexity

(application specificity). Considering

that classes should have at least one

function, RefactorIT sets the default

lower limit for WMC to 1, and the

maximum limit to 50.

Depth of inheritance (DIT)

The DIT measures how deeply a class

is nested inside an inheritance tree,

from the defined class all the way up

to the superclass that declares all

other superclasses. java.lang is a

required package for all Java classes.

Object as their highest-level

superclass; this class is zero-deep.

Accordingly, a class that directly

extends java.lang. The metric value of

the object is 1. Its value is 2, and the

value of any of its subclasses is 2. For

classes and interfaces, RefactorIT

provides the following definition of

DIT:

1. All interface types have a depth of

1

2. The class java.lang.Object has a

depth of 0

3. All other classes have a depth of 1

plus the depth of their super class

Classes farther down in the hierarchy tend to

inherit more methods and state variables,

making it harder to anticipate how they will

act. In this context, a DIT value of 0 implies

a root, whereas values of 2 and 3 suggest a

greater degree of reuse. Low DIT values may

indicate that the benefits of object-oriented

design and inheritance are being

underutilized. For this reason, Refactor IT

suggests capping the DIT at 5, since deeper

trees represent higher design complexity due

to the increased number of methods and

classes.

Coupling between objects (CBO)

Coupling between objects (CBO) is a count

of the number of classes that are coupled to a

particular class i.e. where the methods of one

class call the methods or access the variables

of the other.

Lack of cohesion method (LCOM)

Lack of cohesion implies classes should

probably be split into two or more sub-

classes. Any measure of disparateness

of methods helps identify flaws in the design

of classes. Low cohesion increases

complexity, thereby increasing the likelihood

of errors during the development process.

Number of children (NOC)

Number of Direct Subclasses of a Class, this

metric measures the number of direct

subclasses of a class. The size of NOC

© INNOVATIVE RESEARCH THOUGHTS | Refereed | Peer Reviewed | Indexed

ISSN : 2454 – 308X | Volume : 07 , Issue : 04 | October - December 2021

63

approximately indicates how an application

reuses itself.

[9] CONCLUSION

It is been concluded that more children a class

has, the more responsibility there is on the

maintainer of the class not to break the

children's behavior. As a result, it is harder to

modify the class and requires more testing.

The upper recommended limit for a class in

RefactorIT is 10 and the lower limit is 0. If

NOC exceeds 10 children for a class, this

may indicate a misuse of subclassing.

It becomes more specialized and it can be

hard to understand a system with many

inheritance layers. However, there is a

greater potential reuse of inherited methods.

[10] SCOPE OF RESEARCH

The challenges related to data mining could

be tackled by test case selection approach.

Here older approaches are not similar to

modern one. These recognize only those

components which are directly affected. On

the other hand, slicing may recognize those

down-stream components which are

indirectly affected. It can also be determined

by Slicing that two components have same

implementation behavior or not.

REFERENCES

1. Pooja rana, Rajender singh “ A study

of component based complexity

metrics” ,international journal of

emerging research in mgt. and tech. ,

volume-3, nov-2014, pp. (159-165)

2. Mandeep walia, Anu gupta et.al

“Software Metrics Usage &

Research-Gaps and Future”, IJSWS ,

mar-may 2015, pp. (01-10)

3. A.Aloysius and K.Maheshwaran “A

Review on component based software

metrics” , intern.J. Fuzzy

Mathematical Archive,vol.7 , 2015 ,

pp.(185-194)

4. Parminder Kaur and Navdeep

Batolar“A Review On Quality

Assurance Of Component-Based

Software System”, IOSR-JCE,

vol.17, jun 2015,pp.(53-57).

5. Sachin kumar, Pradeep Tomar et.al

“Coupling Metric To Measure The

Complexity Of Component Based

Software through Interfaces ” , vol.4,

april 2014, pp. (157-162).

6. Jianguo chen,et.al,complexity

metrics for component based

software systems,international

journal of digital content technology

and its application, vol-5,nov 3,march

2011

7. Usha kumari and Sucheta Bhasin, A

journey of software metrics:

© INNOVATIVE RESEARCH THOUGHTS | Refereed | Peer Reviewed | Indexed

ISSN : 2454 – 308X | Volume : 07 , Issue : 04 | October - December 2021

64

traditional to aspect oriented

paradigm, proceedings of the 5th

national conference; INDIACom-

2011

8. Latika Kharb, Rajender Singh:

Assessment of Component Criticality

with Proposed Metrics. Paper

Accepted in INDIACom-2008: 2nd

National Conference: Computing For

Nation Development, Bharati

Vidyapeeth's Institute of Computer

Applications and Management. 08 -

09th February, 2008. New Delhi.

9. Nasib S. Gill, Component-based

measurement: few useful guidelines,

ACM SIGSOFT Software

Engineering Notes, v.28 n.6,

November 2003.

10. Eun Sook Cho, Min Sun Kim, Soo

Dong Kim, "Component Metrics to

Measure Component Quality," Asia-

Pacific Software Engineering

Conference, vol. 0, no. 0, pp. 419,

Eighth Asia-Pacific Software

Engineering Conference

(APSEC'01), 2001.

11. Latika Kharb, Rajender Singh:

Aspect-Oriented Software

Engineering: A New Approach to

Develop Secure Software. In

INDIACom-2007-National

Conference on "Computing for

Nation Development sponsored by

AICTE, IETE, & CSI. February 23--

24, 2007.

12. Jianjun Zhao, "Measuring Coupling

in Aspect-Oriented Systems", 10th

International Software Metrics

Symposium (METRICS'2004),

Chicago, USA, September 14-16,

2004.

13. Nasib S. Gill, Few important

considerations for deriving interface

complexity metric for component-

based systems, ACM SIGSOFT

Software Engineering Notes, v.29

n.2, March 2004.

14. Navneet kaur and Ashima Singh

“Component Complexity Metrics: A

Survey” , inte, rn. J. advanced

research in comp.sci and software

eng. vol.3, june 2013 , pp. (1056-

1061) .

http://swmetrics.org/

