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Abstract 

A highly efficient computer paradigm for optimising resource usage is emerging: cloud computing. 

Even with the advantages taken into account, switching to cloud technology is always dangerous from 

the customer's standpoint. Research on cloud computing that is currently available concentrates on 

technical issues including efficiency, quality, and security. On the other hand, the actualization of cloud 

computing is still a very new area of study. The new paradigm of server less computation, which allows 

developers to provide programmes as stateless functions without consideration for the infrastructure 

that supports them, is the outcome of recent advancements in virtualisation and software design. 

Therefore, the lifespan, execution, and scalability of the actual functions—which are only required to 

run when called upon or triggered by an event—are managed by a server-less system. We present the 

design of a cutting-edge, performance-focused, server-less computing platform that runs on Microsoft 

Azure, is built in.NET, and uses Windows container technology for function implementation. 

Implementation issues are thoroughly investigated, including function scalability and container 

discovery, longevity, and reuse. We evaluate our prototype and provide metrics for assessing the 

execution effectiveness of server less platforms, including IBM's Apache Open Whisk implementation, 

AWS Lambda, Microsoft Azure Functions, and Google Cloud Function. We test the preliminary version 

and find that it beats competing platforms at most concurrent levels. We also look at the 

implementations' scalability and instance expiration patterns. In addition, we address the shortcomings 

and restrictions of our present design, suggest possible solutions, and outline further investigation. 

Keywords: - Server Less, Computing Platform, Cloud Computing, Software Architecture, Possible 

Solutions, Execution Environments, Open Whisk, Implementations. 

I. INTRODUCTION 

Additional solutions are required to manage the network traffic generated by the increasing number of 

IoT devices being deployed in support of emerging technologies such as self-driving vehicles, 

augmented reality applications, and smart cities [1]. Edge technology has showed promise in satisfying 

the high Quality of Service (QoS) requirements of these kinds of applications while decreasing energy 

consumption [2] by expanding the data processing horizon to the edge of the network and relieving 

gadgets of computationally intensive tasks [1,2].  

Server less computation, or Function-as-a-Service (FaaS), a popular cloud computing paradigm, has 

eliminated the need for always-on infrastructures with the usage of ephemeral containers. It is possible 

to halt, destroy, rebuild, and replace these containers with the least amount of preparation and 

configuration required. This event-driven services execution technique enables on-demand access to 
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functions (or services), which may assist with bandwidth costs, latency, availability, and data privacy 

concerns brought on by IoT devices [2]. Integrating server-less computation at the edge of an IoT 

network may reduce the computation time required for small tasks [2].  

Server-less computing environments (such as Amazon Web Services Lambda, Azure Functions, IBM's 

Cloud Functions, [2, 3], or Cloud Functions) are currently supported by all of the main cloud service 

providers. Vendor lock-in results from these platforms' requirements for functionality to be developed 

or implemented in a particular way [2]. Without requiring any kind of vendor lock-in, a number of open-

source FaaS platforms have been created to enable server less computing on private infrastructure. 

Recent research has looked at the effectiveness and usability of a few open source server-less computing 

systems, but it hasn't considered the constraints that come with working in an edge context [2, 3]. 

 A new concept labelled server less computing divides software platforms into several independent, 

stateless processes. Because functions are stateless, they may grow independently and are only run in 

response to triggers, such as user interactions, message events, or database changes. Function-as-a-

service, or FaaS, is another name for server-less computing [3, 4]. Almost all operational issues are 

abstracted away from developers using this strategy. Entrepreneurs just create code and publish it on an 

operating system without a server.  

After that, the platform takes care of networking, fault-tolerant storage, and containerisation. Moreover, 

the platform with fewer servers controls function scaling according to actual usage. A number of 

applications, such as mobile computing, computational science, and data analytics at the border of 

networks, have shown interest in server-less computer. When using private clouds, server-less 

computing infrastructure is frequently managed by an outside business or the operation teams [3, 4]. 

Server-less computing solutions are now offered by all of the main cloud service providers, such as 

Google's Cloud Functions, IBM Cloud Functions, Microsoft Cloud Functions, and Amazon Web 

Services (AWS) Lambda. But certain platforms need features to be developed in a particular way, which 

leads to suppliers who are locked in [3, 4].  

Server-less technological advances is a service offered in the cloud where the logic of an application is 

divided into functions that run in response to events. Services like Apache Open Whisk, Functions from 

Azure, Google Cloud Features, Iron.io Iron Functions, & Open Lambda have developed and provided 

server-less technology, resulting from in the footsteps of AWS Lambda [4]. These events can come 

from sources inside or outside of the cloud platform, but they also frequently happen within its product 

and service offerings, which made it simple for developers to create applications that are dispersed over 

several cloud services. The event-driven ideal, in which programming are defined by actions and the 

events that trigger them, is partially realised via server-less computing [4, 5].  

The terminology used here is reminiscent of active systems with databases, and event-driven computer 

systems have long been suggested in the literature. In these systems, actions are handled in reactions to 

streams of events. These ideas are fully supported by server-less functional systems, which define 

actions as straightforward function abstraction and implement processing of events logic across their 

clouds [5]. These ideas are strongly echoed by IBM's Open Whisk platform (now Apache Open Whisk) 

[5, 6], where functions are explicitly defined in terms of event, trigger, and action.  

As serverless computing interacts with the edge/fog infrastructures of computing, it has shown to be a 

great fit for Internet of Things applications. To accommodate the expected rise in Internet of Things 

(IoT) devices, efforts are underway to incorporate server-less computation into a "hierarchy of data 

centres." With the launch of Lambda Edge, a new offering from AWS, [6, 7], developers of applications 

may now deploy restricted Lambda services in order to execute on edge nodes. Additionally, AWS has 

worked on a number of server-less computing expansions, such Green Grass, which provides a common 

structure for programming for Lambda and Internet of Things applications [7]. With server less 
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computing, programmers may divide big programmes into smaller functions, enabling individual 

application components to grow independently [7]. However, this presents a new difficulty for the 

efficient management of numerous functions. Step Functions, which AWS just added [7, 8], make it 

simpler to organise and visualise function interactions. 

Applications and web programmes may be executed on a foundation that is both flexible and efficient 

thanks to cloud computer. The intricacy of using electronic computing equipment increases with its 

capabilities. Local devices need regular hardware and software changes since they have already become 

less versatile [8]. Over time, programme design changes, become less flexible and more sophisticated 

[7, 8]. Cloud solutions that allow for resource optimisation, scalability, flexibility, and—most 

importantly—cost allocation according to system performance have been developed to address this 

problem. Cloud platforms provide software structures with flexibility and scalability, but in order to 

maximise manufacturing operations, limit system costs, and make efficient use of computing capacity, 

a thorough study is still necessary. Important factors to take into account are the platform for 

implementation and the appropriate architecture for this system. But even the use of cloud platform 

capabilities cannot always ensure that the software product will function well and achieve its intended 

objective [8]. 

According to Gartner, server less cloud computing is becoming more and more relevant, 

“There is absolutely no question about the usefulness of [server less 

computers], which naturally flows to [8], micro service software designs, and 

is poised for rapid expansion and absorption”.  

"Today's PaaS Investments Lead to Server less Technology," according to Forrester, which defines 

server less technology as the next wave of cloud-based abstractions. A rising variety of mobile and 

Internet of Things (IoT) applications are made possible by server less computing, which is quickly 

gaining favour among cloud providers [8]. It is imperative to maintain the fundamental performance 

attributes of server less platforms as their scope and acceptance expand. We want to contribute to this 

attempt in this study by describing the development of a new server-less technology that is performance-

focused and contrasting its performance with that of current technologies. 

1.1 Objectives of the study  

• The use of server-less architecture can reduce operating costs by transitioning from server-

based to pay-per-execution methods. 

• Examine server-less architectures to facilitate quicker development and simpler 

implementation. 

II. LITERATURE REVIEW  

(Kritikos, K., 2018) [9] The emerging computing paradigm called "Server Less Computing" has the 

potential to completely change how apps are created and implemented. This computing approach 

deploys small software components, or functionalities, to the cloud without management or cost to the 

programme developer. Moreover, there are other uses for this kind of computing, such as scientific 

computing and the processing of images. Owing to the aforementioned benefits, established large cloud 

providers like Amazon are addressing the growing acceptability of server less computing by providing 

server less platforms for the setup and provisioning of server less apps for computing. But similar to 

cloud computing, these companies want to keep their clients by providing extra services that make 

server less apps more valuable. Server-less frameworks have been developed recently to overcome such 

problem. 

(McGrath, G., 2017) [10] We present the design of a brand-new, performance-focused server-less 

computing platform that is hosted on Microsoft Azure and is developed in.NET, using containers in 

Windows as the function execution platform. We go into great detail on the implementation of lifespan 
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and reuse, as well as function scalability and container discovery. However, we also conduct testing on 

our prototype, AWS Lambda, Azure Functions, Google Cloud Functions, and IBM's installations of 

Apache Open Whisk. We provide metrics to assess the successful performance of server less platforms. 

(Gadepalli, P. K., 2019) [11] With the help of server less computing structures, users may operate 

single-purpose or small-scale apps without worrying about managing resources, procuring servers, or 

scaling them up to handle increasing demand. Although server-less computing has its roots in cloud 

computing architecture, it may be a perfect fit for edges IoT data processing. However, to offer flexible 

growth at the edge and operational efficiency, traditional server-less solutions based on virtual machines 

and containers are too heavy-weight (large memory footprint and lengthy function invocation time). 

Moreover, a lot of special applications for the Internet of Things needed near-real-time responses and 

low-latency technological data manufacturing, which made the existing cloud-based server-less 

solutions useless. Web Assemble (Wasm) has been proposed as a substitute method for running server-

less applications at performance close to native, with optimised invocation time and a lower memory 

footprints. 

(Pérez, A., Moltó, G., 2018) [12] With the advent of new patterns of architecture like micro services, 

the increasing use of Linux containers like Docker containers, and improvements to fundamental Cloud 

computing features like auto-scaling, developers are now able to break down large, complicated systems 

into smaller, stateless services. As a result, server-less computing—which characterises programmes as 

a system of event-triggered processes—was developed by cloud providers. These applications are 

severely restricted by server-less products or services, such AWS Lambda (which may use a limited set 

of languages for programming or prevent the development and deployment of new libraries). In order 

to address these issues, this paper provides a paradigm and method for developing Server-less 

Container-aware Architectures (SCAR). 

III. PROPOSED DESIGN  

In order to look into server less difficulties with implementation and provide a standard for comparing 

current systems, we developed a focused on outcomes server less computing system. The platform has 

a simple design and a limited feature set. It is developed in.NET and hosted on Microsoft Azure [13, 

14]. The prototype uses a message layer and Azure's storage service to store data. Our configuration 

consists of two parts in addition to Azure Storage offerings: an employee service that manages and runs 

function containers, and a web service that provides access to the platform's public REST API for 

developers [13]. The web service uses an interaction layer consisting of many Azure storage queues to 

identify workers who are accessible. Azure Storage tables are used to store function metadata, whereas 

Azure Storage blobs are used to store function code. An overview of the platform's elements is shown 

in Figure 1. The reason Azure Storage was chosen is that it provides highly scalable and low-latency 

storage primitives through an easy-to-use API, which aligns with the objectives of this solution. These 

storage devices shall be referred to as queues, tables, and blobs for the sake of brevity [13], with it being 

understood that in the context of this study, these terms relate to the relevant Azure Storage facilities. 
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Fig. 1 An overview of the components of the prototype, showing how the web and worker services and 

products are organised, together with the code, metadata, and message entities stored in Azure Storage.  

A. Function Description  

A function is associated with several elements on the system, such as code, operating containers as well, 

data information about them, or "Warm Queue" [13]. Four fields define functional metadata, which is 

the source of truth for functional existence:  

1) Function Identifier - Function resources are located and identified securely using function 

identities, which are produced at random GUIDs provided during functional construction.  

2) Language Runtime - The programming language of a function's code is determined by the 

function's language declaration [13, 14]. 

3) Memory Size - The maximum storage that a function's container can use is indicated by the 

function's memory size. Right now, 1 GB is the maximum function memory amount that may be 

used. A function's capacity for memory determines how many CPU cores are assigned to its 

container [13, 14].  

4) Code Blob URI - Some of you will receive a zip package containing the code when you create a 

function. The URI of this code is added to the function's metadata once it has been transferred to a 

blobs inside the platform's account for storage [14, 15]. 

B. Function Execution  

Our strategy only permits manual invocations and is based on a very basic function programming 

paradigm. Our study focuses on the functioning of systems, for which human help is adequate 

execution. While event source processor or programming quality of construction are important aspects 

in server less services, [15], our investigation concentrates on operation of the system. Calling the 

'invoke' route of the REST API from functional sources is how function are executed. The bodies of the 

initiating call request act as the function' inputs, while the answer's bodies involve the function's output 

[15]. 

C. Container Allocation  

Every worker can allocate space to operate containers from a pool of free memory. The name of the 

container, which uniquely identifies both the container and the amount of memory reservation, is 

produced when memory is assigned, and it is included in the URI sent in container allocations signals. 

Because of this, each communication in the queue may be uniquely identified and associated with a 

particular memory reservation inside the worker service instance [15, 16]. Carefully chosen memory 

has been distributed, and worker functions expect each function to consume the amount of memory 

allotted to it. 
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D. Container Removal  

In order to be exact, there are two methods for removing a container. First, worker service instances 

that carry containers for a function regularly check for the existence of the warm queue, which is deleted 

by the web services when a function is killed. When a worker service finds a deleted function queue, it 

ends the operating function container and recovers its memory allocation. Second, our technology 

allows for the deletion and recovery of a container's memory after it has been inactive for 15 minutes 

[16]. If the amount of memory left over after memory reclamation above the permitted function memory 

size, worker services will move the newly allocated container to the cold queues.  

D. Container Image  

Docker is used by the platform to run Microsoft Nano Server containers, and the Docker Engine API is 

used for communication. An execution controller or a function implementation (currently Node.js 

v6.9.5) are intended to be included in the container image. There is no function code in the image. Upon 

starting the container that will be used, we attach an only accessible for reading volumes comprising 

code for those functions, rather than creating bespoke containers for each platform function [13, 17]. 

One image's development was selected for several reasons, such as the ease of use with a single image, 

the speed at which volumes can be attached, [17], or the fact that Windows Nano Server containers are 

significantly larger than those of lightweight Linux systems like Alpine Linux, which may have an 

impact on start-up times or storage expenses. The function's memory size determines the container's 

storage capacity and CPU percentage, in addition to the read-only volumes. 

IV. PERFORMANCE RESULTS 

Nevertheless, we used AWS Lambda, Functions from Azure, Google Cloud Functions, and Apache 

Open Whisk to develop two tests in order to evaluate the system's execution speed. To conduct these 

evaluations, we developed a speed tool, which uses the Server Less Computing Environment to deploy 

a Node.js test functions to each of the apps [17, 18]. In order to provide Server less Framework support 

on our platform, we have developed a Server less Plugins. This tool uses a straightforward test 

procedure that runs and responds rapidly in order to quantify the administrative expenses offered by 

platforms [18]. Using the function's execution route on our platform, this function is called synchronous 

via HTTP events/triggers as supplied for all of the platforms. 

A. Concurrency Test 

The results of the simultaneous test, which evaluates a server-less platform's capacity to call a given 

function at scale, are shown in Table 1 [18]. By reissuing each request as soon as the preceding call's 

response is received, our tool keeps making repeated calls to the test procedure.  

Table 1 Results of the concurrency test, showing the average number of executions finished in a second 

compared to the quantity of requests for simultaneous operations made to the role. [18] 

Functions of 

Google Cloud 

AWS 

Lambda 

Apache Open 

Whisk 

Azure 

Functions 
Prototype 

0.219 2.54 66.21 21.66 69.59 

0.418 2.69 54.69 14.65 5.99 

20 4.51 41.65 41.52 45.96 

1.25 6.98 21.65 25.1 54.96 

0.986 79.9 98.47 54.21 15.65 

36.98 4.98 54.6 16.52 52.96 

2.96 79.59 69.4 42.51 44.25 

1.59 5.99 63.1 21.66 98.64 

2.54 54.96 59.4 42.51 41.62 

6.49 21.58 41.59 21.63 59.58 



© INNOVATIVE RESEARCH THOUGHTS   | Refereed  |  Peer Reviewed  | Indexed 

ISSN : 2454 – 308X   |   Volume :  06 , Issue : 03 |  March   2020 

 

7 
 

4.89 59.5 98.96 14.96 14.51 

5.89 57.6 14.59 54.25 21.65 

6.49 19.54 24.96 26.65 12.05 

4.66 35.64 58.96 14.56 11.98 

2.59 11.96 14.98 21.06 14.596 

A maximum of 15 continuous calls to the test function are allowed in the test, which begins with the 

first initiating call and adds a new one every 10 seconds (Figure 2) [17, 18]. The tool tallies the number 

of responses it receives every second, and this number ought to grow as simultaneously increases. Ten 

attempts were made to complete the test on each platform. 

 
Fig. 2 Results of the concurrency test, showing the average number of executions finished in a second 

compared to the quantity of requests for simultaneous operations made to the function. [18] 

B. Back off Test  

The back off test results are shown in Table 2, which serves to look into the cold start times and 

expiration behaviours of function instances on different platforms [19]. The back off test sends a single 

executing request, increasing in time from one to thirty minutes to the test procedure.  

Table 2 Results of the Back off Test, showing the function's total execution delay and the amount of 

time since its last execution. [18, 19] 

Google Cloud 

Functions 

AWS 

Lambda 

Apache Open 

Whisk 

Azure 

Functions 
Prototype 

0.219 2.54 66.21 21.66 69.59 

0.418 54.21 54.69 14.65 5.99 

21.65 16.52 41.65 21.65 45.96 

6.49 19.54 24.96 26.65 54.21 

4.66 35.64 58.96 14.56 16.52 

2.59 11.96 14.98 21.06 42.51 

63.1 21.63 69.4 63.1 21.66 

59.4 14.96 63.1 59.4 42.51 

0.219 2.54 66.21 21.66 69.59 

0.418 54.21 54.69 14.65 5.99 

21.65 16.52 41.65 21.65 45.96 

5.89 57.6 14.59 54.25 26.65 

6.49 19.54 24.96 26.65 12.05 

4.66 35.64 58.96 14.56 11.98 

2.59 11.96 14.98 21.06 14.596 
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The function containers in the prototype are designed to expire after 15 minutes of inactivity. This 

characteristic is seen in Figure 3, where the completion latencies after 15 minutes show how effective 

our prototypes are at starting cold [20]. The function resources within Azure Functions appear to be 

finished after a few minutes, and the cold start timings are comparable to those of our prototype. It's 

important to emphasise that although though Azure Functions and the prototype we created are 

Windows apps, their function execution environments are very different [21, 22]. While Azure 

Functions run inside of Azure App Service, our prototype makes advantage of Windows container 

technology [22]. 

 
Fig. 3 Results of the back off test, showing the function's total execution delay and the amount of time 

since its last execution. [23] 

Operational idling does not seem to harm Cloud Functions [23, 24]. As discussed below in the 

examination of Windows containers, unusually quick container activation or pre-allocation of 

containers might be contributing factors to this trend [25, 26]. 

V. LIMITATION AND FUTURE 

• Warm Queues: Because it is a FIFO queue, the warm queue causes issues with container expiry. 

Let's say that the function with high load has ten containers assigned to it for execution. Later, the 

load decreases to the point wherein only one container can manage every function execution.  

• Asynchronous Executions: The prototype only allows for simultaneously processed invocation at 

this time. Put otherwise, a request that calls a function will receive the result of that call, not just 

the procedure's start and stop. Handling asynchronously executions is simple; the web service may 

simply respond to the invocation call and proceed to handle the execution of the request as usual 

[26, 27].  

• Worker Utilization: One aspect of our implementation that we can greatly improve is worker 

utilisation. Since that not every function on a worker executes or uses up all of their brain's reserve, 

feasible designs would require an excessive allocation of worker resources [27, 28].  

• Windows Containers: Compared to containers developed for Linux, containers created for 

Windows are limited in several ways. This is mainly because Linux container systems were 

developed on top of Linux c-groups, which provide useful functions that are not accessible on 

Windows. The ability to update storage container resource and suspend containers is the most 

noteworthy feature when considering server less computing. When implementing server-less 

platforms, it is common practice to pause containers when they are inactive in order to prevent 

resource usage and to uncaused them before execution starts. 

• Security: One area of ongoing study is server-less the safety of the system. It is a dangerous idea 

to host arbitrarily drawn user code in function container on multitenant systems; care must be taken 

to prevent vulnerabilities while developing and using function containers. An essential practical test 

of generic container security is the junction of RPC & privacy [28, 29].  
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• Performance Measures: Creating and evaluating performance metrics offers several opportunities 

to further knowledge of server-less platform performances [30]. Although the platform' overhead 

during single-function implementation was the main focus of this work, improving network latency 

and timing problems management might improve the quality of these measures.  

VI. CONCLUSION  

The current status of open-source server less computing framework was examined in the present 

research. Cloud platforms are extensively utilised for the development and integrating of software 

architecture. This article presents many architectures that are used to analyse the involved capabilities. 

Compared to other architecture examined, server designs offer total access to services and are far safer. 

In addition to providing dependable, event-driven access to an array of cloud services, server less 

computing facilitates cost control and incredibly fine-grained scalability through straightforward 

deployment and programming techniques. Motivated by these advantages, the increasing utilisation of 

server-less applications requires assessing the quality of server-less computing platforms and 

developing novel strategies to fully leverage the potential of the technology. The performance results 

of our platform are promising, and our assessment of the existing application indicates several areas for 

further exploration and development. 

VII. REFERENCES  

[1] Baldini et al., “Serverless computing: Current trends and open problems,” in Research Advances in 

Cloud Computing. Springer, 2017, pp. 1–20.  

[2] A. Kanso and A. Youssef, “Serverless: beyond the cloud,” in Proceedings of the 2nd International 

Workshop on Serverless Computing. ACM, 2017, pp. 6–10.  

[3] A.Varghese and R. Buyya, “Next generation cloud computing: New trends and research directions,” 

Future Generation Computer Systems, vol. 79, pp. 849–861, 2018.  

[4] S. Nastic et al., “A serverless real-time data analytics platform for edge computing,” IEEE Internet 

Computing, vol. 21, no. 4, pp. 64–71, 2017.  

[5] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge computing: extending serverless computing 

to the edge of the network,” in Proceedings of the 10th ACM International Systems and Storage 

Conference. ACM, 2017, p. 28.  

[6] Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: Distributed computing 

for the 99%,” in Proceedings of the 2017 Symposium on Cloud Computing. ACM, 2017, pp. 445–

451.  

[7] Baldini, P. Castro, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V. Muthusamy, R. Rabbah, and P. 

Suter, “Cloud-native, eventbased programming for mobile applications,” in Proceedings of the 

International Conference on Mobile Software Engineering and Systems. ACM, 2016, pp. 287–288. 

[8] Mahmoudi, N. and Khazaei, H. (2022). “Performance modelling of metric-based serverless 

computing platforms,” IEEE transactions on cloud computing, pp. 1–1. 

[9] Pérez, A. et al. (2018). “Serverless computing for container based architectures,” Future 

generation’s computer systems: FGCS, 83, pp. 50–59.  

[10] Pavych, N. and Pavych, T. (2019). “Method for time minimization of API requests service from 

cyber-physical system to cloud database management system,” Advances in Cyber-Physical 

Systems, 4 (2), pp. 125–131. DOI: 10.23939/acps2019.02.125. 

[11] A. Cabrera, G. White, A. Palade, and S. Clarke, “The Right Service at the Right Place: a Service 

Model for Smart Cities,” in 2018 IEEE per Com. IEEE, 2018.  

[12] A. Cabrera, A. Palade, G. White, and S. Clarke, “Services in IoT: A Service Planning Model Based 

on Consumer Feedback,” in International Conference on Service-Oriented Computing. Springer, 

2018.  



© INNOVATIVE RESEARCH THOUGHTS   | Refereed  |  Peer Reviewed  | Indexed 

ISSN : 2454 – 308X   |   Volume :  06 , Issue : 03 |  March   2020 

 

10 
 

[13] White, A. Palade, and S. Clarke, “Qos Prediction for Reliable Service Composition in IoT,” in 

ICSOC. Springer, 2017.  

[14] A. Palade, C. Cabrera, G. White, and S. Clarke, “Stigmergic Service composition and Adaptation 

in Mobile Environments,” in International Conference on Service-Oriented Computing. Springer, 

2018.  

[15] Palade and S. Clarke, “Stigmergy-Based QoS Optimisation for Flexible Service Composition in 

Mobile Communities,” in 2018 IEEE World Congress on Services (SERVICES). IEEE, 2018.  

[16] White, A. Palade, C. Cabrera, and S. Clarke, “IoTPredict: Collaborative QoS Prediction in IoT,” in 

2018 IEEE IPerCom. IEEE, 2018.  

[17] A. Pinto, J. P. Dias, and H. Sereno Ferreira, “Dynamic Allocation of Serverless Functions in IoT 

Environments,” in IEEE 16th International Conference on Embedded and Ubiquitous Computing 

(EUC), 2018. 

[18] A. Hammond, “Lambdash: Run sh commands inside AWS Lambda environment,” lambdash, 2017.  

[19] Sparta, “Sparta: A Go framework for AWS Lambda micro services,” 2017.  

[20] M. Villamizar, O. Garcs, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas, S. Gil, C. 

Valencia, A. Zambrano, and M. Lang, “Infrastructure cost comparison of running web applications 

in the cloud using aws lambda and monolithic and micro service architectures,” in 2016 16th 

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 2016, 

pp. 179–182.  

[21] Kritikos, K., & Skrzypek, P. (2018, December). A review of serverless frameworks. In 2018 

IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC 

Companion) (pp. 161-168). IEEE. 

[22] McGrath, G., & Brenner, P. R. (2017, June). Serverless computing: Design, implementation, and 

performance. In 2017 IEEE 37th International Conference on Distributed Computing Systems 

Workshops (ICDCSW) (pp. 405-410). IEEE. 

[23] Gadepalli, P. K., Peach, G., Cherkasova, L., Aitken, R., & Parmer, G. (2019, October). Challenges 

and opportunities for efficient serverless computing at the edge. In 2019 38th Symposium on 

Reliable Distributed Systems (SRDS) (pp. 261-2615). IEEE. 

[24] Pérez, A., Moltó, G., Caballer, M., & Calatrava, A. (2018). Serverless computing for container-

based architectures. Future Generation Computer Systems, 83, 50-59. 

[25] Wagner and A. Sood, “Economics of Resilient Cloud Services,” ArXiv e-prints, Jul. 2016.  

[26] A. Warzon, “AWS Lambda pricing in context: A comparison to EC2,”, 2016.  

[27] A. Lowery, “Emerging Technology Analysis: Serverless Computing and Function Platform as a 

Service,” Gartner, Tech. Rep., September 2016.  

[28] S. Hammond, J. R. Rymer, C. Mines, R. Heffner, D. Bartoletti, C. Tajima, and R. Birrell, “How To 

Capture The Benefits Of Microservice Design,” Forrester Research, Tech. Rep., May 2016. 

[29] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A Preliminary Review of Enterprise 

Serverless Cloud Computing (Function-as-a-Service) Platforms,” in 2017 IEEE CloudCom, Dec 

2017.  

[30] E. d. Lara, C. S. Gomes, S. Langridge, S. H. Mortazavi, and M. Roodi, “Hierarchical Serverless 

Computing for the Mobile Edge,” in 2016 IEEE/ACM Symposium on Edge Computing (SEC), 

2016.  

[31] L. F. Herrera-Quintero, J. C. Vega-Alfonso, K. B. A. Banse, and E. Carrillo Zambrano, “Smart ITS 

Sensor for the Transportation Planning Based on IoT Approaches Using Serverless and 

Microservices Architecture,” IEEE Intelligent Transportation Systems Magazine, 2018.  



© INNOVATIVE RESEARCH THOUGHTS   | Refereed  |  Peer Reviewed  | Indexed 

ISSN : 2454 – 308X   |   Volume :  06 , Issue : 03 |  March   2020 

 

11 
 

[32] J. Franz, T. Nagasuri, A. Wartman, A. V. Ventrella, and F. Esposito, “Reunifying Families after a 

Disaster via Serverless Computing and Raspberry Pis,” in 2018 IEEE LANMAN, 2018.  

[33] C. Cicconetti, M. Conti, and A. Passarella, “An Architectural Framework for Serverless Edge 

Computing: Design and Emulation Tools,” in 2018 IEEE CloudCom. IEEE, 2018.  

[34] A. Kuntsevich, P. Nasirifard, and H.-A. Jacobsen, “A Distributed Analysis and Benchmarking 

Framework for Apache OpenWhisk Serverless Platform,” in Middleware Conference. ACM, 2018. 

[35] Kaur, J., Choppadandi, A., Chenchala, P. K., Nakra, V., & Pandian, P. K. G. (2019). AI 

Applications in Smart Cities: Experiences from Deploying ML Algorithms for Urban Planning and 

Resource Optimization. Tuijin Jishu/Journal of Propulsion Technology, 40(4), 50-56. 

[36] Case Studies on Improving User Interaction and Satisfaction using AI-Enabled Chatbots for 

Customer Service . (2019). International Journal of Transcontinental Discoveries, ISSN: 3006-

628X, 6(1), 29-34. https://internationaljournals.org/index.php/ijtd/article/view/98 

[37] Kaur, J., Choppadandi, A., Chenchala, P. K., Nakra, V., & Pandian, P. K. G. (2019). Case Studies 

on Improving User Interaction and Satisfaction using AI-Enabled Chatbots for Customer Service. 

International Journal 

[38] ofTranscontinental Discoveries, 6(1), 29-34. 

https://internationaljournals.org/index.php/ijtd/article/view/98 

[39] Choppadandi, A., Kaur, J., Chenchala, P. K., Kanungo, S., & Pandian, P. K. K. G. (2019). AI-

Driven Customer Relationship Management in PK Salon Management System. International 

Journal of Open Publication and Exploration, 7(2), 28-35. 

https://ijope.com/index.php/home/article/view/128 

[40] AI-Driven Customer Relationship Management in PK Salon Management System. (2019). 

International Journal of Open Publication and Exploration, ISSN: 3006-2853, 7(2), 28-35. 

https://ijope.com/index.php/home/article/view/128 

[41] Big Data Analytics using Machine Learning Techniques on Cloud Platforms. (2019). International 

Journal of Business Management and Visuals, ISSN: 3006-2705, 2(2), 54-58. 

https://ijbmv.com/index.php/home/article/view/76 

[42] Shah, J., Prasad, N., Narukulla, N., Hajari, V. R., & Paripati, L. (2019). Big Data Analytics using 

Machine Learning Techniques on Cloud Platforms. International Journal of Business Management 

and Visuals, 2(2), 54-58. https://ijbmv.com/index.php/home/article/view/76 

[43] Mahesula, Swetha, Itay Raphael, Rekha Raghunathan, Karan Kalsaria, Venkat Kotagiri, Anjali B. 

Purkar, Manjushree Anjanappa, Darshit Shah, Vidya Pericherla, Yeshwant Lal Avinash Jadhav, 

Jonathan A.L. Gelfond, Thomas G. Forsthuber, and William E. Haskins. "Immunoenrichment 

Microwave & Magnetic (IM2) Proteomics for Quantifying CD47 in the EAE Model of Multiple 

Sclerosis." Electrophoresis 33, no. 24 (2012): 3820-3829. https://doi.org/10.1002/elps.201200515. 

[44] Big Data Analytics using Machine Learning Techniques on Cloud Platforms. (2019). International 

Journal of Business Management and Visuals, ISSN: 3006-2705, 2(2), 54-58. 

https://ijbmv.com/index.php/home/article/view/76 

[45] Mahesula, S., Raphael, I., Raghunathan, R., Kalsaria, K., Kotagiri, V., Purkar, A. B., & ... (2012). 

Immunoenrichment microwave and magnetic proteomics for quantifying CD 47 in the experimental 

autoimmune encephalomyelitis model of multiple sclerosis. Electrophoresis, 33(24), 3820-3829. 

[46] Mahesula, S., Raphael, I., Raghunathan, R., Kalsaria, K., Kotagiri, V., Purkar, A. B., & ... (2012). 

Immunoenrichment Microwave & Magnetic (IM2) Proteomics for Quantifying CD47 in the EAE 

Model of Multiple Sclerosis. Electrophoresis, 33(24), 3820. 



© INNOVATIVE RESEARCH THOUGHTS   | Refereed  |  Peer Reviewed  | Indexed 

ISSN : 2454 – 308X   |   Volume :  06 , Issue : 03 |  March   2020 

 

12 
 

[47] Raphael, I., Mahesula, S., Kalsaria, K., Kotagiri, V., Purkar, A. B., Anjanappa, M., & ... (2012). 

Microwave and magnetic (M2) proteomics of the experimental autoimmune encephalomyelitis 

animal model of multiple sclerosis. Electrophoresis, 33(24), 3810-3819. 

[48] Salzler, R. R., Shah, D., Doré, A., Bauerlein, R., Miloscio, L., Latres, E., & ... (2016). Myostatin 

deficiency but not anti‐myostatin blockade induces marked proteomic changes in mouse skeletal 

muscle. Proteomics, 16(14), 2019-2027. 

[49] Shah, D., Anjanappa, M., Kumara, B. S., & Indiresh, K. M. (2012). Effect of post-harvest treatments 

and packaging on shelf life of cherry tomato cv. Marilee Cherry Red. Mysore Journal of 

Agricultural Sciences. 

[50] Shah, D., Salzler, R., Chen, L., Olsen, O., & Olson, W. (2019). High-Throughput Discovery of 

Tumor-Specific HLA-Presented Peptides with Post-Translational Modifications. MSACL 2019 

US. 

[51] Big Data Analytics using Machine Learning Techniques on Cloud Platforms. (2019). International 

Journal of Business Management and Visuals, ISSN: 3006-2705, 2(2), 54-58. 

https://ijbmv.com/index.php/home/article/view/76 

[52] Purohit, M. S. (2012). Resource management in the desert ecosystem of Nagaur district_ An 

ecological study of land agriculture water and human resources (Doctoral dissertation, Maharaja 

Ganga Singh University).  

[53] Kumar, A. V., Joseph, A. K., Gokul, G. U. M. M. A. D. A. P. U., Alex, M. P., & Naveena, G. 

(2016). Clinical outcome of calcium, Vitamin D3 and physiotherapy in osteoporotic population in 

the Nilgiris district. Int J Pharm Pharm Sci, 8, 157-60 

 

https://ijbmv.com/index.php/home/article/view/76

